初中三角函数降幂公式大全图解,三角函数公式降幂公式表是三角函数降幂公式是三角函数常用公式,下面总结了初中三角函数降幂公式,希望能帮助到大家的。
关于初中三角函数降幂公式大全图解,三角函数公式降幂公式表以及初中三角函数降幂公式大全图解,初中三角函数降幂公式大全图,三角函数公式降幂公式表,三角函数公式降幂公式,三角函数的降幂公式的记忆口诀等问题,小编将为你整理以下知识:
初中三角函数降幂公式大全图解,三角函数公式降幂公式表
三角函数降幂公式是三角函数常用公式,下面总结了初中三角函数降幂公式,希望能帮助到大家。三角函数降幂公式三角函数的降幂公式是:cos²α = (1+ cos2α) / 2
sin²α=(1-cos2α) / 2
tan²α=(1-cos2α)/(1+cos2α)
运用二倍角公式就是升幂,将公式cos2α变形后可得到降幂公式:
cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α
∴cos²α=(1+cos2α)/2
sin²α=(1-cos2α)/2
降幂公式,就是降低指数幂由2次变为1次的公式,可以减轻二次方的麻烦。
二倍角公式:
sin2α=2sinαcosα
cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α
tan2α=2tanα/(1-tan²α)
注意:(1)二倍角公式的作用在于用单角的三角函数来表达二倍角的三角函数,它适用于二倍角与单角的三角函数之间的互化问题。
(2)二倍角公式为仅限于2是的二倍的形式,尤其是“倍角”的意义是相对的。
(3)二倍角公式是从两角和的三角函数公式中,取两角相等时推导出,记忆时可联想相应角的公式。
三角函数升幂公式sinx=2sin(x/2)cos(x/2)
cosx=2cos^2(x/2)-1=1-2sin^2(x/2)=cos^2(x/2)-sin^2(X/2)
tanx=2tan(x/2)/[1-tan^2(x/2)]
三角函数的降幂公式是什么?
下面给大家分享三角函数的降幂公式以及降幂公式的推导过程,一起看一下具体内容:
1、三角函数的降幂公式:
sinα=(1-cos2α)/2
cosα=(1+cos2α)/2
tanα=(1-cos2α)/(1+cos2α)
2、三角岁颂函数降幂公式推导过程
运用二倍角公式就是升幂,将公式cos2α变形后可得到降幂公式:
cos2α=cosα-sinα=2cosα-1=1-2sinα
∴cosα=(1+cos2α)/2
sinα=(1-cos2α)/2
降幂公式,就是降低指数幂由2次变为1次的公式,可以减轻二次方的麻烦。
三角函数起源
公元五世纪到十二世纪,租袭印度数学家对三角学作出了较大的贡献。
尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。
印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。
后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。
十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。
以上内弊雀兄容参考 百度百科-三角函数
版权声明:本文来源于互联网,不代表本站立场与观点,特视点评网无任何盈利行为和商业用途,如有错误或侵犯利益请联系我们。