反三角函数公式大全表格,反三角函数公式大全表格30 45 60是反三角函数是一种基本初等函数的。
关于反三角函数公式大全表格,反三角函数公式大全表格30 45 60以及反三角函数公式大全表格,三角函数反三角函数公式大全,反三角函数公式大全表格30 45 60,反三角函数公式大全表格高数,反三角函数公式大全表格图片等问题,小编将为你整理以下知识:
反三角函数公式大全表格,反三角函数公式大全表格30 45 60
反三角函数是一种基本初等函数。它是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx,反正割arcsecx,反余割arccscx这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。
反三角函数的分类反正弦函数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。
记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。
定义域[-1,1],值域[-π/2,π/2]。
反余弦函数:余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数。
记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。
定义域[-1,1],值域[0,π]。
反正切函数:正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数。
记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。
定义域R,值域(-π/2,π/2)。
反余切函数:余切函数y=cotx在(0,π)上的反函数,叫做反余切函数。
记作arccotx。
表示一个余切值为x的角,该角的范围在(0,π)区间内。
定义域R,值域(0,π)。
反正割函数:正割函数y=secx在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。
记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。
定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
反余割函数:余割函数y=cscx在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。
记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。
定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。
反三角函数的公式余角关系公式
arcsin(x)+arccos(x)=π/2
arctan(x)+arccot(x)=π/2
arcsec(x)+arccsc(x)=π/2
负数关系公式
arcsin(-x)=-arcsin(x)
arccos(-x)=π-arccos(x)
arctan(-x)=-arctan(x)
arccot(-x)=π-arccot(x)
arcsec(-x)=π-arcsec(x)
arcsec(-x)=-arcsec(x)
倒数关系公式
arcsin(1/x)=arccsc(x)
arccos(1/x)=arcsec(x)
arctan(1/x)=arccot(x)=π/2-arctan(x)(x>0)
arccot(1/x)=arccot(x)=π/2-arccot(x)(x>0)
arccot(1/x)=arctan(x)+π=3π/2-arccot(x)(x<0)
arcsec(1/x)=arccos(x)
arccsc(1/x)=arcsin(x)
反三角函数计算公式大全
反三角函数计算公式大全如下:
1、arcsin(-x)=-arccosx。
2、arccos(-x)=π-arccosx。
3、arctan(-x)=-arctanx。
4、arccot(-x)=π-arccotx。
5、arcsinx+arccosx=π/2=arctanx+arccotx。
反三角函数是一种基本初等函数。
它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切 arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自档歼表示其反正弦、反余弦、反正切、反余切,反正割,反桥蠢带余割为x的角。
三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。
欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
反三角函数的运算法则:
cos(arcsinx)=√(1-x)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
arcsinx=x+x^3/(2*3)+(1*3)x^5/(2*4*5)+1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1)!!(表示敏芦双阶乘)。
arccosx=π-(x+x^3/(2*3)+(1*3)x^5/(2*4*5)+1*3*5(x^7)/(2*4*6*7)……)(|x|<1)
arctanx=x-x^3/3+x^5/5-……
arctanA+arctanB
设arctanA=x,arctanB=y
因为tanx=A,tany=B
利用两角和的正切公式,可得:
tan(x+y)=(tanx+tany)/(1-tanxtany)=(A+B)/(1-AB)
所以x+y=arctan[(A+B)/(1-AB)]
即arctanA+arctanB=arctan[(A+B)/(1-AB)]
版权声明:本文来源于互联网,不代表本站立场与观点,特视点评网无任何盈利行为和商业用途,如有错误或侵犯利益请联系我们。